A Method for Downscaling FengYun-3B Soil Moisture Based on Apparent Thermal Inertia

نویسندگان

  • Chengyun Song
  • Li Jia
چکیده

FengYun-3B (FY-3B) soil moisture product, retrieved from passive microwave brightness temperature data based on the Qp model, has rarely been applied at the catchment and region scale. One of the reasons for this is its coarse spatial resolution (25-km). The study in this paper presented a new method to obtain a high spatial resolution soil moisture product by downscaling FY-3B soil moisture product from 25-km to 1-km spatial resolution using the theory of Apparent Thermal Inertia (ATI) under bare surface or sparse vegetation covered land surface. The relationship between soil moisture and ATI was first constructed, and the coefficients were obtained directly from 25-km FY-3B soil moisture product and ATI derived from MODIS data, which is different from previous studies often assuming the same set of coefficients applicable at different spatial resolutions. The method was applied to Naqu area on the Tibetan Plateau to obtain the downscaled 1-km resolution soil moisture product, the latter was validated using ground measurements collected from Soil Moisture/Temperature Monitoring Network on the central Tibetan Plateau (TP-STMNS) in 2012. The downscaled soil moisture showed promising results with a coefficient of determination R2 higher than 0.45 and a root mean-square error (RMSE) less than 0.11 m3/m3 when comparing with the ground measurements at 5 sites out of the 9 selected sites. It was found that the accuracy of downscaled soil moisture was largely influenced by the accuracy of the FY-3B soil moisture product. The proposed method could be applied for both bare soil surface and sparsely vegetated surface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Disaggregation of SMAP radiometric soil moisture measurements at catchment scale using MODIS land surface temperature data

Satellite soil moisture observations often require the enhancement of spatial resolution prior to being used in climatic and hydrological studies. This study employs the thermal inertia theory to downscale the 36 km radiometric data of the NASA’s Soil Moisture Active/Passive Mission (SMAP) into 1 km resolution. Regressions between daily temperature difference and daily mean soil moisture were e...

متن کامل

An improved algorithm for disaggregating microwave-derived soil moisture based on red, near-infrared and thermal-infrared data

Accurate high-resolution soil moisture data are needed for a range of agricultural and hydrologic activities. To improve the spatial resolution of ∼40 km resolution passive microwave-derived soil moisture, a methodology based on 1 km resolution MODIS (MODerate resolution Imaging Spectroradiometer) red, near-infrared and thermal-infrared data has been implemented at 4 km resolution. The three co...

متن کامل

A Downscaling Method for Improving the Spatial Resolution of AMSR-E Derived Soil Moisture Product Based on MSG-SEVIRI Data

Soil moisture is a vital parameter in various land surface processes, and microwave remote sensing is widely used to estimate regional soil moisture. However, the application of the retrieved soil moisture data is restricted by its coarse spatial resolution. To overcome this weakness, many methods were proposed to downscale microwave soil moisture data. The traditional method is the microwave-o...

متن کامل

Recent Advances in Soil Moisture Estimation from Remote Sensing

Monitoring soil moisture dynamics from local to global scales is essential for a wide range of applications. The field of remote sensing of soil moisture has expanded greatly and the first dedicated soil moisture satellite missions (SMOS, SMAP) were launched, and new missions, such as SENTINEL-1 provide long-term perspectives for land surface monitoring. This special issue aims to summarize the...

متن کامل

Remote Sensing of Soil Moisture in Vineyards Using Airborne and Ground-Based Thermal Inertia Data

Thermal remote sensing of soil moisture in vineyards is a challenge. The grass-covered soil, in addition to a standing grape canopy, create complex patterns of heating and cooling and increase the surface temperature variability between vine rows. In this study, we evaluate the strength of relationships between soil moisture, mechanical resistance and thermal inertia calculated from the drop of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2016